换元法求不定积分

270110

换元积分法可分为第一类换元法与第二类换元法。第一类换元法也叫凑微分法,通过凑微分,最后依托于某个积分公式,进而求得原不定积分。第二类换元法的变换式必须可逆,并且Φ(x)在相应区间上是单调的。

换元法求不定积分

第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种: 根式代换法,三角代换法。

两种换元法例题

第一类换元积分法

原式=∫(x-1+1)/根号下(x-1)dx

=∫[根号下(x-1)+1/根号下(x-1)]d(x-1)

=(2/3)*(x-1)^(3/2)+2根号下(x-1)+C,其中C是任意常数。

第二类换元积分法

令t=根号下(x-1),则x=t^2+1,dx=2tdt

原式=∫(t^2+1)/t*2tdt

=2∫(t^2+1)dt

=(2/3)*t^3+2t+C

=(2/3)*(x-1)^(3/2)+2根号下(x-1)+C,其中C是任意常数。

网络推广经验,欢迎分享:广州SEO,网络推广 » 换元法求不定积分

赞 (0) 打赏

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏